
1 

 

Class: Smart Transportation 

Students: Souhaiel Ben Salem, Suleyman Barthe-Sukhera 

Professors: Olivier Sename, Medero Ariel 

Date: January 27, 2022 

 

Longitudinal and Lateral Control of a 

Vehicle Bicycle-Model 
 

I. Introduction 

The number of cars on the road has expanded considerably as a result of the widespread use of 

automobiles. It therefore becomes increasingly important to consider passenger safety and 

comfort, fuel consumption optimization, and pollution emission reduction. Automatic control can 

play a key role in the development of Advanced Driver Assistance Systems to tackle some of these 

issues (ADAS). 

This lab deals with the longitudinal and lateral control of an automotive vehicle within the 

framework of fully automated guidance. The automotive vehicle is a complicated system with 

nonlinear longitudinal and lateral coupled dynamics. As a result, automated guidance must be 

performed in conjunction with longitudinal and lateral control.  In this lab, we examine a model 

predictive control-based automated steering technique. To deal with the longitudinal speed 

tracking problem, a longitudinal control technique is also proposed. Finally, a unified longitudinal 

and lateral control strategy helps to improve the combined control performance. This whole control 

strategy is tested through simulations showing the effectiveness of the present approach. 

 

II. Longitudinal Control 

The objective of the longitudinal controller is to have a vehicle track a reference longitudinal 

velocity. The simplest controller, a purely proportional (P) controller, has the obvious downside 

to poorly tracking a dynamic reference velocity. In control terms, this means that the vehicle will 

lag behind reference ramp inputs. Furthermore, neglected system dynamics and forces will cause 

the P controller to always have a steady-state error. Removing this steady-state error is 

accomplished by adding an integral term, and thus the minimum complexity controller is defined: 

a PI controller. 

 

II.I. PI Controller Model 

While designing the longitudinal PI controller, there are three factors to consider: minimizing 

overshoot, ensuring a comfortable experience, and making sure the control is actionable (no over-

saturation of any controllers). The generic form of a PI controller is: 
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𝐾 = 𝐾𝑝 ⋅ 𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡 

(1) 

The simplified kinematic equations that neglect aerodynamics, road friction, and any external 

forces is written as: 

 �̈� =
𝑢

𝑚
 

(2) 

Where �̈� is longitudinal acceleration, 𝑚 is the mass of the vehicle, and 𝑢 is Force, which is also 

the control input.  

It should be noted that road friction, gravity, and aerodynamic drag forces are included in the 

MATLAB Simulink simulation, and these forces are defined as follows: 

 
𝐹𝑎𝑒𝑟𝑜 =

1

2
𝜌 ⋅ 𝐶𝑑 ⋅ 𝐴 ⋅ 𝑣2 

(3) 

Where 𝐶𝑑 is the drag coefficient of the vehicle, 𝐴, is the effective cross-sectional area of the 

vehicle, 𝑣 is the longitudinal velocity, and 𝜌 is the air density, which is a function of altitude 

defined as: 

 

𝜌 =

𝑝0 (1 + (
𝐿 ⋅ 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒

𝑇0
)

9.81⋅𝑀
𝑅⋅𝐿⁄

)

𝑅𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ⋅ (𝑇0 − 𝐿 ⋅ 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒)
 

 

Where 𝑝0 = 101.325 𝑘𝑃𝑎, 𝑇0 = 288.15 𝐾, 𝐿 = 0.0065 𝐾/𝑚, 𝑀 = 0.0289652 𝐾𝑔/𝑚𝑜𝑙, 𝑅 =

8.31446 𝐽/(𝑚𝑜𝑙 ⋅ 𝐾), and 𝑅𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 = 287.1J/(mol ∗ K). For reference, the chosen altitude was 

200 meters above sea level. 

The longitudinal force due to the vehicle being at an angle (for when the road is not perfectly flat), 

is defined as: 

 𝐹𝑔𝑟𝑎𝑣 = 𝑚 ⋅ 9.81 ⋅ si n(𝜃1) (4) 

Where 𝑚 is the mass of the vehicle, and 𝜃1 is the angle normal to the road inclination angle along 

the vehicle’s longitudinal axis. 

Tire friction forces are modelled as: 

 𝐹𝑡𝑖𝑟𝑒 = 𝐶𝑟 ⋅ 𝑚 ⋅ 9.81 ⋅ co s(𝜃2) (5) 

Where 𝐶𝑟 is the coefficient of friction of the tire, and 𝜃2 is the road inclination angle along the 

vehicle’s longitudinal axis. 

The necessity of an anti-windup system will be demonstrated in the following section, but the 

definition of such a controlling mechanism is defined here: 

 
𝐾𝑎 =

1

𝑇𝑠
3⁄ + 𝐾𝐼

 
(6) 
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Where 𝑇𝑠 = 0.01 𝑠𝑒𝑐 and 𝐾𝐼 is the integrator gain from Equation 1. 

 

II.II. PI Controller Performance 

Using the simplified equation of system dynamics in Equation 1, a SISO PI controller is designed 

to have a rise time of ~1 second, and a settling time of ~8 seconds, without too much overshoot. 

As such, the following proportional and integral gains were used, 𝐾𝑝 = 1500 and 𝐾𝐼 = 200. 

 

Figure 1: Step Response of PI Longitudinal Controller 

It is important to consider controller saturation in all control schemes. Here, the control saturation 

is assumed to be the physical limitations of road traction, and not any limit on engine torque. The 

Burckhardt non-linear model of tire friction yields the following force curve with respect to 

angular velocity of the wheel from a reference longitudinal velocity of 10 𝑚/𝑠: 

 

Figure 2: Burckhardt Longitudinal Tire Forces for Dry and Wet Conditions 
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The saturation limits for longitudinal tire force in dry conditions is defined as: 𝐹𝑥,𝑑𝑟𝑦 ∈

[−9000, 9000]𝑁 and in wet conditions, is defined as: 𝐹𝑥,𝑤𝑒𝑡 ∈ [−4000, 4000]𝑁. 

After implementing controller saturation depending on whether the road is dry or wet, it was clear 

that an anti-windup solution was necessary. As shown in the figure below, the controller saturation 

is significantly more important when the road is dry, and thus accrues a significant amount of 

integrator error over time leading to horrific overshooting oscillations. 

 

Figure 3: Reference Velocity Tracking of PI Controller in Dry vs Wet Road Conditions 

The problem becomes apparent upon inspection of the control output, and the solution is to include 

an anti-windup feed-back to the PI controller using Equation 6. The same figure from above is 

recreated below with anti-windup included in the control structure: 

 

Figure 4: Reference Velocity Tracking of PI Controller in Dry vs Wet Roads with Anti-Windup 
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III. Lateral Control 

The objective of a lateral controller is to adjust the steering angle so that a vehicle follows a refence 

yaw rate and thus, a refence path. The controller minimizes the current vehicle position and the 

reference path. In this part we used YALIM, which is a toolbox designed for quadratic 

programming and optimization, to formulate and solve the MPC optimization problem and 

eventually implement the closed loop controller.  

 

III.I. MPC Design:  

The lateral motion of the vehicle is governed by lateral forces that result from the deformation of 

the contact patch (surface of contact between the road and tire). These forces are a function of tire 

slip (α), vertical load applied on the tire (𝐹𝑧)  and friction coefficient (μ)  

The lateral forces are modeled using Pacejka’s magic formula:  

 𝐹𝑡𝑦 = 𝐷𝑦𝑠𝑖𝑛 (𝐶𝑦. 𝑎𝑟𝑐𝑡𝑎𝑛 (𝐵𝑦(1 − 𝐸𝑦)𝛽 + 𝐸𝑦𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑦𝛽))) 𝑒(−6∣𝜆∣5) 
(7) 

Where 𝐵𝑦 = (2 − μ)𝑏𝑦 , 𝐶𝑦 = (5/4 − μ/4)𝑐𝑦, 𝐷𝑦 = 𝑑𝑦μ and 𝐸𝑦 = 𝑒𝑦 are the lateral parameters 

function of μ ∈ [0; 1]. Additionally, the tire/road adhesion coefficient "𝑒(−6∣𝜆∣5)" is used to model 

the lateral friction forces dependency w.r.t. the slip ratio: when slipping occurs on a wheel, lateral 

forces are reduced. 

The planar bicycle model (Dugoff et al) was used to derive the main dynamics under interest, 

which are:  

 Equation of lateral motion: 

 𝑚𝑣(�̇� + �̇�) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟 (8) 

 Equation of yaw motion: 

𝐼𝑧�̈� = 𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟 (9) 

 

From these equations the simplified 2-DOF is defined as  

 

While designing the MPC controller, there are two considerations to keep in mind: the evolution 

of the vehicle’s dynamics and the forces acting on the tires defined previously. This is why we 

defined two constraints:  
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 Equality constraint i.e., dynamic constraint, which is basically a one-step-ahead prediction 

function:  

𝑋(𝑘 + 1) = 𝐴𝑑𝑋(𝑘) + 𝐵𝑑𝑢(𝑘) (10) 

Where 𝐴𝑑 and 𝐵𝑑 are discretized matrices derived from 𝐴 and 𝐵.  

 

 Inequality constraint:   

−60 ∗ 𝜋/180 ≤ 𝑢(𝑘) ≤ 60 ∗ 𝜋/180 (11) 

 

We define our quadratic objective function as:  

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = (𝑟 − 𝐶 ∗ 𝑥(𝑘)′ ∗ 𝑄 ∗ (𝑟 − 𝐶 ∗ 𝑥(𝑘)) + 𝑢(𝑘) ∗ 𝑅 ∗ 𝑢(𝑘) (12) 

Where 𝑟  is the reference, 𝐶 = [1 0] is a matrix used to extract the first state variable (ψ̇), R and 

Q are the weighting matrices. 

III.II. Explicit SS MPC and Implicit MS MPC 

In a first step, we Implemented a simple MPC using a single shooting strategy, where we only 

consider the control sequence 𝒖 over the prediction horizon 𝑵 = 𝟏𝟎.  We also added the initial 

state (X0) as a decision variable to avoid reformulating the problem every time we have a new 

initial state. This also enable us to obtain a solution from an arbitrary initial state (i.e., initial yaw 

rate 𝝍 ̇  and side slip angle 𝜷).  

The optimization problem generated by the precedent formulation is a problem in the control 

variables (and initial state). However, it is move convenient to optimize over both the control and 

state vectors and model the system dynamics using equality constraints. 

For a randomly picked initial state and weighting matrices 𝑄 = 5 and 𝑅 = 9 and a constrained 

control vector (−
𝜋

3
≤ u ≤

𝜋

3
<), we get the following optimal sequences for each formulation: 

Figure 5: Optimal control sequence for both SS and MS MPC formulations 
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III.II. Closed-Loop Nonlinear MPC 

In this part we apply our MPC controller (using the MS strategy) to the nonlinear model of the 

lateral vehicle le dynamics to make the system adhere to a specific (reference) longitudinal velocity 

𝑽𝒙 = 𝑹. 𝒘 (which can vary over time) and yaw rate 𝜓 ̇ = 0.15 𝑟𝑎𝑑/𝑠𝑒𝑐.  

     
                                         Figure 6: The stand-alone MPC controller 

The MPC controller’s performance depends on the weighting matrices Q and R. To find the best 

values for these matrices this, a simple tuning strategy can be followed where we fix the value of 

one matrix and change the value of the other until there is no significant performance improvement. 

Afterwards, we can tune the other matrix using the same principle.  

Henceforth, the following weighting matrices were used: 𝑸 = 𝟏𝟎 and 𝑹 =  𝟐 (which means that 

we are putting much more weight on reference tracking than on input regulation), along with a 

sampling period 𝑻𝒔 = 𝟎. 𝟎𝟏 and a prediction horizon 𝑵 = 𝟏𝟎. 
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    Figure 7: Reference velocity and yaw rate tracking  

We were able to converge to the reference velocity 𝑽𝒙𝒓𝒆𝒇 after 1 second at the start and 1.5 

seconds following the drop of the reference velocity from 22.5 m/s to 15 m/s. we were also able 

to converge to the reference yaw rate 𝝍 ̇  after 0.2 seconds without overshooting the reference 

value. 

     
                                           Figure 8: The optimal sequence (steering angle) 

The figure above shows the MPC’s control action. The controller applies the first control in the 

optimal sequence until the next sampling instant and at the new reached state, formulate the new 

problem and solve it to get the new best sequence of actions, apply the first control in this new 

sequence and so on. We can see that starting from an initial guess of the steering angle δ=11.8, the 

controller was able to generate an optimal control trajectory that satisfies the constraints and leads 

to the desired yaw rate and longitudinal velocity. 

 

IV. Full Dynamics and Trajectory Tracking 

The objective of this part is to assess the performance of our control scheme i.e., the combined 

later and longitudinal controllers when performing in a realistic scenario like trajectory tracking. 

The trajectory to be followed is simple racetrack:  
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                                                          Figure 9: The reference trajectory 

 

For this purpose, we used the Pure Pursuit algorithm, which takes in the reference the current 

position of the vehicle, its side slip angle and linear speed and produces a reference yaw that when 

followed, keeps the vehicle on the desired path. This reference yaw rate will be the input for the 

MPC controller.  

  

           Figure 10:  Pure pursuit illustration 

 

IV.I. Combined PI and MPC Controller 

The reference velocity, obtained as a piece-wise function dependent on the position of the vehicle 

in the track, is fed to the PI controller, for longitudinal control. The control output of the PI 

controller, reference wheel rotation rate, is passed to the MPC controller for yaw control. 

Combining the two yields a Simulink schema as shown below: 



10 

 

Figure 11: Unified PI and MPC Controller 

 

IV.II. Performance Analysis – Constant Velocity 

To assess the performance of our combined controller, we tackled the trajectory following task 

using different constant velocities across the whole trajectory for each test.  

1. 50km/h:  

When tested with a refence velocity of  50𝑘𝑚/ℎ, our controller performed well and the vehicle 

was able to follow the refence yaw rate and refence velocity almost immediately. This is also 

reflected on the vehicle trajectory w.r.t refence trajectory.  

     
                                                 Figure 12:  Results obtained for Vx=50km/h 
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2. 75km/h: 

When operating at a higher speed, we begin to see the limitations of our controller as the   

vehicle is unable to keep up with the reference yaw rate. In fact, we see that the reference yaw 

is much higher that the vehicle’s when performing a turn. This means that the vehicle would 

go off-track when trying to make almost every turn. This problem is caused by the increase 

of the look-ahead distance which varies proportionally with 𝑉𝑥.  

     
                                                 Figure 13:  Results obtained for Vx=75km/h 

 

3. 90km/h:  

When we increase the reference velocity to 90𝑘𝑚/ℎ, all the problems mentioned before get 

amplified.  

 

Figure 14:  Results obtained for Vx=90km/h 
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IV.III. Performance Analysis – Variable Velocity 

The previous tests suggest that a correction needed to be made in order to improve the controller’s 

performance. The first logical idea that comes to mind is to decrease the lookahead distance. In 

order to quickly regain the path between waypoints, a small lookahead distance will the vehicle to 

move quickly towards the path. However, as can be seen in the figure below, the vehicle overshoots 

the path and oscillates along the desired path.  

 

                 Figure 15:  Results obtained for Vx=75km/h and a small lookahead distance 

The solution is to use an adaptive reference velocity i.e., different 𝑉𝑥𝑟𝑒𝑓
 values for different sections 

of the reference trajectory as we want to accelerate as much as possible for straight potions of the 

track and brake when making a turn.  

This strategy improved the controller’s performance significantly and the time needed to complete 

the whole track was reduced to ~250 seconds. 

Figure 16:  Trajectory and velocity tracking 
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IV.IV. Performance Analysis – Suboptimal Driving Conditions 

It is interesting to compare the performance of the combined PI and MPC controller when the road 

conditions are less than optimal. The results from all previous tests, Figures 12 – 16, assume the 

road is perfectly flat and dry. Here, two alternate scenarios are simulated: first is a wet, but flat, 

road, and second is a wet and variably inclined road. The wet condition influences the PI controller 

as previously mentioned in Section II, but also influences the MPC controller. Using the same 

piece-wise velocity reference generator as a function of track position, the first (wet only) scenario 

yields the following result: 

Figure 17: Wet Flat Road 

While this follows the same piecewise velocity reference, the acceleration and deceleration are 

significantly impacted by the wetness of the road. The significant increase in trajectory overshoot 

is due in part to the vehicle’s inability to slow down fast enough before a curve, but also by the 

physical constraints of the MPC controller to keep the vehicle controllable. 

The second scenario entails both a wet road as well as a road inclination angle which oscillated as 

a function of time (1 oscillation/minute): 

Figure 18: Wet Oscillating Road 
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V. Conclusion 

The combination of longitudinal and lateral control is effectively accomplished by combining an 

anti-windup PI controller with an MPC controller for longitudinal and lateral control respectively. 

The performance of this combination of controllers is tested on a simulated Montmelo F1 racetrack 

where the vehicle accelerates to a top speed of 150 kph and appropriately decelerates to follow the 

turns of the track smoothly and safely. The impact of driving strategy (constant velocity compared 

to piecewise velocity) is demonstrated in Figures 12 – 15, and the importance of driving conditions 

is demonstrated in Figures 17 and 18. With an optimal driving condition and a piecewise reference 

velocity as a function of position on the racetrack, the simulated vehicle achieves a lap time of 

about 250 seconds. A Formula 1 vehicle can complete a lap in about 78 seconds, and this three-

fold decrease in circuit time can be explained by the vehicles ability to accelerate to ~ 100km/h in 

just over 2.6 seconds, whereas the simulated vehicle can accelerate to this velocity in roughly 10 

seconds, and the fact that the simulated vehicle began in the middle of the straight-away at 

significantly less than maximum velocity. 

In conclusion, the unified longitudinal and lateral controller provides satisfactory control of the 

vehicle within reasonable and safe limits of operation. Suggestions for future work include 

identifying and simulating the effect of road bank angle in addition to road inclination angle. This 

is expected to play a significant role in how fast the vehicle can turn. Another perspective of where 

research could continue is by improving the PI controller to consider a chain of vehicles ahead of 

it. By using the latest technology in vehicle-to-vehicle communication, accidents due to traffic 

jams could be avoided and would integrate nicely with the string stability control perspective. 

 


